123 research outputs found

    Microtubules: Sizing Up the GTP Cap

    Get PDF
    SummaryThe ‘GTP cap’ of the microtubule has long been postulated to exist, but a recent experiment gives us the first quantitative measurements of the cap size in the cell

    Molecular Basis for the Instability of Parasitic Actin Filaments

    Get PDF

    The NH2 Terminus of RCK1 Domain Regulates Ca2+-dependent BKCa Channel Gating

    Get PDF
    Large conductance, voltage- and Ca2+-activated K+ (BKCa) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four α subunits of BKCa may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BKCa gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BKCa activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BKCa channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition

    The unusual dynamics of parasite actin result from isodesmic polymerization

    Get PDF
    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here, we re-examine the polymerization properties of actin in Toxoplasma gondii (TgACTI), unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. TgACTI polymerization kinetics lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly, and the size distribution of TgACTI filaments in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers
    corecore